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Dielectric Measurements on Polymeric
Materials by Using Superconducting
Microwave Resonators

WOLFGANG MEYER

Abstract—This paper deals with the theoretical and practical
investigation of a test method using superconducting cavity and
helical resonators in an oscillator loop, which allows precision
measurements to be performed on solid dielectrics in the range of
0.1-10 GHz, and below 9 K. The underlying formulas are an
extension of the well-known perturbation formalism and are not
restricted to low temperatures. Our experiments resulted in unloaded
quality factors of Q = 5 - 107, between 0.2 and 10 GHz, with a
maximum Q (2.2 K, 0.19 GHz) of 9 - 105, which enabled us to
observe the smallest loss tangent so far: tan é (2.2 K, 6.5 GHz) =
(3.7 F 5 percent) - 10”7 in polyethylene.

I. INTRODUCTION

N CONNECTION with recent applications of RF super-

conductivity (e.g., in the generation and distribution of
microwave high power [1]), the superconducting high-
energy linear accelerators and fusion reactors [2], or the
superconducting microwave communication systems [3],
there is growing need for experimental data on microwave
low-temperature dielectric properties of materials. This
paper deals with the theoretical and practical investigation
of a suitable test method which allows high-precision meas-
urements between 0.1 and 10 GHz and 2 and 9 K, by using
superconducting helical and cavity resonators in an oscilla-
tor loop. We first present the underlying theory of measure-
ment, an extension of the well-known perturbation
formalism; subsequently, we describe the cylindrical Egy
and E,,, cavities in detail, theoretically as well as their
performances, and end up with some results on loss tan-
gents of polymers which are the lowest ever measured
outside the optical frequency region.

II. THEORY

When a dielectric specimen is inserted into a RF resona-
tor, both the electric (E) and magnetic (H) field
configurations change, and quality factor Q and resonance
frequency f are altered. By measuring f and Q of the
unperturbed and perturbed resonator, dielectric constant g,
and loss tangent tan J = ¢ /&5 (where ¢, = ¢, — j&4) of the

VA

&5 fvs Eo,Ez |2 dv,

specimen can be calculated starting from the exact expres-
sion for the complex frequency shift
COZ - wT
1253
— §v, [} — &3)e0 EYEs + (uf — pa o HYH,) AV
ch (efeo EYE, + pipo HYH,) dV, '

2.1)

Equation (2.1) is derived without any assumptions except
that the walls are perfectly conducting [4]. In the numerator
the integration is over V;, the volume of the sample; the
subscripts 1 and 2 refer to the empty and partially filled
cavity, respectively. The complex frequency shift is related to
measurable quantities by [5]

wz—w’f=f2—f1 +l(_£ _i)

Wy fa 2\, O,
which is valid for Q,, @, > 1. These are the general equa-
tions to be applied in any specific experiment where the real
and imaginary parts of the dielectric constant and perme-
ability are measured in terms of the real and imaginary
part of the frequency shift.

In this article we will restrict ourselves on nonmagnetic
dielectric materials only, i.e., u; = y, = po. When inserting
a Jossy sample, we may regard this procedure as being
divided into two steps, thus splitting the overall frequency
shift into a real part due to an ideal lossless dielectric (X,
real), and an additional frequency shift, caused by introduc-
ing losses (Y + jZ, complex).

Under conditions X <€ 1, Y < X, which are equivalent to
small real frequency shifts and small imaginary field com-
ponents Im {E,} ~ tan 6 - Re {E,} < Re {E,}

L—f

——— <01,

fa

the imaginary part of the overall frequency shift obtains
as

(2.2)

tan 6 < 0.1 (2.3)
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N fVc (8'130|E212 + ,“olelz) av, + jVs 30(5'2 - 8’1)|E2|2 dv;

(2.4)

which together with (2.2) leads to the desired expression for
the loss tangent
_ 1)

1{e&}
tan 6 == |+
an 2(8,2
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Fig. 1. (a) Ey,, resonator (7 GHz). (b) Helical resonator {0.2-2 GHz).

where

§VS eo By E, dV
fvc (160 ELEy + noH  Hy) dY,

jvc 8'1“52|2 dv.
§v. |E;|* dV,

The real part of (2.1) equals the real frequency shift, i.e.,

S —f1_ . , jVs e E E, dV
S = (e - 8) ; :
f2 jvc (eot ELEy + po H H,) ch( )
2.7

Equations (2.5)-(2.7) represent an extension of the well-
known perturbation theory to the lossy case. As the name
perturbation implies, the two situations, ie., the cavity
without and with a sample, must be very much alike; this
criterion is expressed by condition (2.3). In order to demon-
strate the range of application of the above theory and
possible simplifications, we will apply the equations above
to actual resonators employed at our institute for low-
temperature dielectric measurements. The evaluations are
restricted to a lossless medium with ¢, = 1 being initially
contained in the cavity, e.g., vacuum, or liquid helium with g,
(90 MHz, 4.2 K) = 1.049 and tan 6 < 107 1° [6].

K=

: (s; g+ (2.6)

III. MiCROWAVE RESONATORS

We use cylindrical cavities at 7 GHz and the helical
resonator of Fig. 1 between 0.2 and 2 GHz Numerical
evaluations in this paper are restricted to the cavity resona-
tor, but the same tendencies regarding errors in dielectric
constant measurement, etc., can be observed with the helix
type.

The cavity is operated in the Ey;o and Ey;; mode, the
latter having advantageous wall field configurations which
allow the resonator to be made of two identical half-cups
without currents flowing across joints and affecting the
quality. The analytical field expressions are gained by
the exact solution of the boundary value problem outlined in

1093

Fig. 2. Frequency shift of cavity (Fig. 1) due to a dielectric ¢;. Exact
equation (4.1): . Approximate equation (4.5): —- —-— . Approx-
imate equation (4.7).

various textbooks on Maxwell’s theory. The solutions are
given in the Appendix (Sec. Al and A2), and are referred to
subsequently in this paper.

IV. DieLECTRIC CONSTANT MEASUREMENT

4.1 Characteristic Equation

With the notations given in Section A2 of the Appendix,
the characteristic equation is
k2s _Elg_ IO(sta) _ ZO(kZCG‘ —

& ki Iykyea)  Zy(kyea)

The real part of the dielectric constant is readily determined
by the numerical calculation of the frequency shift which is
introduced in (4.1) as k .,k .. This evaluation will be referred
to as the exact solution.

For small deviations of the transversal phase constants
k,s.k,. from the empty case k,

kzc = k 1 + Ak2
kys = \/872 (kg + Ak,)
the following simple expression evolves from (4.1):
ky,  2b

ANCENY.
~ No(Xo1) + I1(X01)No(xXo1a/b) Aky b (43)
No(xo01)x01a/(2b) — I(x01) Ak, b - 2b/(maxo,)
which is further simplified by using first order approxima-
tions of Bessel functions [7]
Ak, 7 Ny(xo4) (a 2
— e~ =} (1 —&)
kl 4 IO(x01) Xo1 b ( 82)
The resultant frequency shift due to the insertion of a
dielectric ¢,

0. (@4.1)

@2)

(4.4)

fo—fi_ 186(a/b)(1 — &)
fr 1+ 186(a/b)*(1 — &)
1s compared with the exact solution for the Ey,y and Eq, 4

resonators in Figs. 2 and 3, showing reasonable coincidence
for small e-values.

(4.5)
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4.2 Cavity Perturbation Formula

Equation (2.7)is of more general interest than the charac-
teristic equation which often is not known in case of more
complex sample and cavity geometries. The fields in the
(small) specimen are usually the solutions of static problems
[5]. For long samples placed in a parallel electrical field, the
perturbed field in the interior of the cylinder equals
the unperturbed field. With the identity E, = E,, (2.2)
results in the well-known perturbation formula

fz -1 _ 1—¢ jVs |E1l2 dV;‘
f2 2 v |ELP AV,

Its analytical solution with respect to the E, ;o mode (g = 0)
and the E,;; mode (g = 1-—see Sec. Al of the Appendix) is

(4.6)
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and is plotted in Figs. 2 and 3, showing the limited range of
validity of this often used formula which leads to acceptable
results only under very restricted conditions of small dielec-
tric constant and sample dimensions.

The evaluation of the exact equation (2.7) is an elaborate
procedure, but it determines the frequency shift very ac-
curately though the transversal phase constants k, .k, (or
the resonance frequency f ) included in the field expressions,
are not known initially. The frequency shift is stationary
against variations of f, in the right-hand-side integrals of
(2.7), and therefore only needs approximate values to be
inserted for k5 .k,.. This is done in Fig. 4 which displays the

The physical interpretation of (4.9} is that for an oscillating
electromagnetic system the relative frequency pulling is
equal to the relative energy change of the system due to
changing its configuration. E; represents the field
configuration inside the infinitely long sample insertion tube
of volume V;, (Fig. 1). The circularly symmetric E,, mode in
the cavity ensures that only E,; , modes will be excited in the
tube. We approximate E; by the E,; mode only, because
higher order modes are decaying even faster in the below
cutoff tube

~ deviation of thecalcula?ed frequency shift apcordingto (27) E,, =- AL, (ﬁ)i )2 I (@ r) exp (_fc_g z’)
when the frequency f, in the field expressions £, is varied. Joie \ a a a
Departures from the exact shift are ignorable when satisfy- A [xa\2 x X
ing the only condition that k, must differ from k, in the E, = L (—91) I (—01 r) exp (—'-(L1 z’). (4.10)
unperturbed state. Fig. 4 was gained by evaluating @182\ 4 a a
the following analytical solution of (2.7):
fr=fi ~(1—5) [KZF | + kikayo(2 — g)F,]
2 = 0 RN I, + 6+ 2 - ) = B )
kzs/k2c +kikoo2 — g)(Fy + FoFs)) (48)

F,~F s denote combinations of Bessel functions, given in Sec.
A3 of the Appendix.

4.3 Errors in Dielectric Constant M easurement
Due to a Sample Insertion Hole

Equation (2.7) was further employed to compute the
influence of a sample insertion hole (Fig. 1) on the resonance
frequency and the resulting error in dielectric constant
measurement. Equation (2.7) now converts into (4.9) [8],
which is an alternative formulation of the resonator action
theorem [9]:

f—fo _# Jv, |ELP 4V,
fo | 20 |EFaV.

(4.9)

2’ is the distance into the tube as measured outward from the

interface A between the cavity and the tube (Fig. 5). Follow-
ing the scopes outlined in [10], we rather arbitrarily equate
the integrated square of the unperturbed cavity field at the
interface to the integrated square of the tube field at
the interface, in order to get the relation between
the amplitude factors 4, in (4.10) and A, in (A.1) of
the Appendix, obtaining

a’e,
2b%I3(x01)”
Combining (A.1), (4.10),and (4.11)into (4.9), we arrive at the

A=A, (4.11)
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Fig. 5. Electrical field configuration at the sample insertion tube.

following expression for the frequency shift, which is valid
for small-hole diameters 2a/2b < 0.2:
S=Jo _
fo

g5 a°Xo;

(ol + (3] @]
(4.12)

The errorin ¢, — 1 due toerrorsinf; andf,is obtained from
the total differentiation of the first order perturbation
formula (4.5). With the expression for the errors in fre-
quency, equation (4.12), it finally amounts to

2b*hI3(x4)

d(e, — 1)
g — 1
= — 2 a 'f_i.
mNo(xou)ls(x01) 0 (%q) + (X—Zi) 2~ q)] &
(4.13)

Numerical values for frequency shift and error in &, are
plotted in Figs. 6 and 7 which show that this effect should not
be ignored in high precision measurements.

V. DIiSSIPATION MEASUREMENT

According to (2.5) the loss tangent depends on the
frequency shift as well as on the quality factor Q and field
correction factor K. For negligible field distortions E | = E,,
(2.6) is reduced to

K~1-2Af, (5.1
with Af, denoting the frequency shift according to (4.6).
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Thus small departures of K from 1 are a quantitative
measure of the range of application of the perturbation
theory. For the exemplary cavity of Fig. 1, K deviates
appreciably from 1, as documented in Fig. 8, and therefore
can lead to relative errors in tan 6—measurement of more .
than 50 percent if neglected. ‘

Another source of error is the change of the geometric
factor G when inserting the specimen. G determines the
quality factor Q with the help of the microwave resistance
R, and depends upon the wall field configuration at the
inner surface A of the cavity, i.e., upon the tangential
magnetic fields H,,,

v [H] 2V,

G:'Q.RA:('O:“O&A lHt lZdA

(52)

Explicit evaluations of (5.2) for the empty H = H, and
perturbed cavity H = H, result in these analytical expres-
sions for the respective geometric factors

o o BT

012
b) *
1
2(5*@)

(5.3)
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TABLE 1
CriticAL TEMPERATURE T,, BAND-GAP PARAMETER A AND IMPROVEMENT FACTOR V OF

MICROWAVE SUPERCONDUCTORS

Pb Nb NbTi MoRe Nb,;Sn
T]K] 722 925 9.8 10.1 182
Ak, T] 205 1.86 173 178 21
V(@42 K; 10 GHz)  5-10? 14-10° 75-10° 2-10° 10
References [}, 121 [} [12] 3] [14] [15}, [16]
5’010 /,’ ulb/=o . RA£T) = Rpcs(f,T) + R.oi(f)- (6.1)
ry - .20
K " /-// ol Well below the critical temperature T, and under condition
I I // |__—01s of hf < A/10 (i.e., for frequencies below 50 GHz), the theo-
“ a — retical BCS surface resistance behaves as
7 / de==010
7 —":L—:"/ ) (1.7 -+ 2.0) AT
= 0.05 Ryes ~ f4~exp S (6.2)
10 | T kyTe T
2 4 & M Tc and band-gap parameter A for relevant RF super-
2 conductors are compiled in Table 1.
T 7 /{/0'20 The table in additipn contains the improvc?ment factor
wl- Eont ,/ L e V(4.2 K, 10 GHz), which relates the surface resistance of the
K / / s superconductor (SC) at low temperature to Copper (Cu) at
7 ’ room temperature
'll // / '/ p
/// =010 V(T,f)=R4(Cu, 300 K, f)/R,SC, T, ).  (6.3)
Zé i -——"’:————/
10 e Besides Rpcs there appears a residual resistance R, in
005 (6.1), which is practically independent from temperature and
2 ‘ & . e} 0 is closely related to the state of the surface (smoothness,

Fig. 8. Correction factor of cavity resonator (Fig. 1). Exact equation
(2.6): . Approximate equation {5.1): ———,

h
G, = wzlloi(z - ‘1)

k2s F4 2
F22 Da) 0
Cit (ku e'z) 2

k2s F4
2 e 2
C2 * (k20 8’2

) [e:+ 2% -0

(5.4)

C:. C,, F,. and Z, represent combinations of cylinder
functions given in the Appendix. Numerical examples for the
equivalent change of the Q factor due to modifications of the
wall field configuration are displayed in Fig. 9, proving that
this effect should be ignored in case of a high enough Q,
compared to Q,. Under the same condition the frequency
dependence of R ,(f) will be neglected, though it might be
strong in superconducting materials.

V1. RF SUPERCONDUCTIVITY

Measurements of the frequency and temperature depen-
dence of technical superconductors can be split into two
contributions to the surface resistance R,

contaminations, etc.). In many cases, especially at low
temperatures < 4.2 K, the lowest surface resistance obtain-
able is determined by R, while even lower values could be
reached in an ideal superconductor. The physical origin of
the residual resistance was not quite understood until now;
the most feasible microscopic model is based on phonon
exchange among traps in the surface layer of the metal and
explains most features of R, (field and frequency depen-
dences) qualitatively [17]-]19].

The available data on the measured BCS resistance is
compiled in Fig. 10. Fig. 11 contains the values of R, which
were obtained with different, sometimes sophisticated, sur-
face preparation methods, as there are chemical and electro-
chemical polishing, as well as heating processes. The straight
line interpolates our own measurements for Nb, which after
machining was first treated chemically in a HF/HNO,
solution, then electron beam welded and recrystallized at
1300°C in an ultra-high vacuum (UHV). These resonators
show unloaded Qs of typically 5- 107 at 4.2 K in the
gigahertz region, with 9 - 10°® (at 2.2 K and 0.19 GHz) in
excess, which corresponds to an absolute accuracy of tan &
measurement of better than 1077,

VII. EXPERIMENTAL PROCEDURE AND RESULTS

The quantities of (2.5) are resonance frequency, loaded
quality factor, and coupling coefficients, which are obtained
in a high precision test assembly (described in detail else-
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Fig. 9. Change of geometric factor G, (eq. (5.4)) due to the insertion of
dielectric &}.

where [20]). It consists of the transmission type resonator,
which is the frequency determining element in a closed loop,
in series with a phase shifter, a transistor amplifier or
TWTA, and a p-i-n modulator which interrupts the station-
ary oscillation which is possible under appropriate phase
conditions and sufficient amplification. The quality factor is
obtained from the exponential decay of the resonator power
envelope. The coupling factors are determined by measuring
the incident and transmitted powers during steady state, and
the resonance frequency is measured with a microwave
counter. Measurement errors do not exceed F 2 percent for
Q’s greater than 10*; thus the relative error of tan § measure-
ment generally amounts to less than 5 percent for tan § >
5 - 10~ 7. Extensive investigations on various polymers and
glasses using this measurement equipment have been pub-
lished elsewhere [21]-[25] and go beyond the scope of this
paper. Briefly summarized, the absorption is enhanced by
the dipolarity of the substance, i.e., by impurities or irregu-
larity of the (amorphous) material. Above 10 GHz the loss is
mainly due to the low-frequency tail of the infrared absorp-
tion peaks extending into the microwave region by many
phonon processes, whereas below 1 GHz, losses are mainly
caused by phonon-induced tunneling relaxation of impuri-
ties or side group dipoles. These molecular processes seem to
delimit the intrinsic loss of any polymeric or amorphous
material to at least tan 6 > 10~ 7. Our smallest measured
loss tangent in medium density polyethylene oftan 6 (22K,
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Fig. 11. Residual surface resistance R, of microwave superconductors
(experimental data partly taken from [2], [12]-[16]).

6.5 GHz) = (3.7 F 5 percent) - 10”7 approaches this value
quite closely.
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APPENDIX

Al. Field Expressions of the Lowest Eigenmodes
in Cylindrical Cavities with Height h and 2b
in Diameter

The equations are as follows for 0 <r <b:

Al .
E,,=—""kik,I,(kyr)sin (k.z
1]w111121(1) (k-2)
_ M e .
E, = kilo(kyr) cos (k.2)
181

H¢1 = Alklll(klr) [N (kzZ) ’ (A.l)
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and the separation condition appears as

w%l‘osﬁ.:k% ‘|‘k.3> ki =Xxo1/b

k,= q%, X0y = 2.405. (A2)
In the above equations g = 0 refers to the E,;, mode,
whereas g = 11s to be used in case of the E,, resonance. I,
and I, are Bessel functions of the first kind of the order zero
and one. A, is the amplitude factor dependent upon the

energy content of the cavity.

A2. Field Expressions of the Lowest Eigenmodes
in a Cylindrical Cavity Containing a Dielectric Sample
&y with 2a in Diameter (Fig. 1)

The equations are as follows for 0 < r < a:

A2 .
E,, . =—"kyk, I,k k
r2s jwz 8'2 25z 1( 2sr) s ( zz)
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Zo(kaer) = No(kzcb)lo(kzcr) - Io(kzcb)No(kzcr)

Zy(kaer) = No(kaocb)l 1 (ka.r) — Io(kab)N 1 (kacr). (A4)
The amplitude factors are related by
A
2 dolla) = 2 Zolkaa)  (AS)
& &1
and the separation conditions appear as
oty = K, + I
2 ’ 2 2 n
w3 ey = k3. + k2, kz=q~};. (A.6)

A3. The Solution of Field Integrals (2.7)

A
E ;= j;zgs-’;k%sl olks,r) cos (k. z) The field integrals incorporated in (2.7) are of the form
Hyyo = Ay kyly(kysr) cos (k,2) . r2
and a <7< b | rLo(r)Mo(r) dr = 5 (LoMo + Ly M) (A7)
Er2c == BZ / chkzZI(kZCr) sin (kzz) " r2
281 | PLAM () dr =5 (LoMo + LiMy) —rLoM;  (A8)
Ech =z B2 ’ k%cZO(kZCV) cos (kz Z)
W28 L, and M, being arbitrary normal cylinder functions of the
Hye = Baky Z,(ks,r) cos (k.z). (A-3) order n. The actual solutions of (2.7) yield these results
which are to be inserted into (4.8)
1
Fl = m [kl alo(kl a)Il(kzsa) - kzsall(kl a)Io(kzsa)]
1
Fy= -2 [kyaly(kya)lo(kssa) — kasalo(kya)li(kysa)]
1
Fy= W{No(kub) " [—kacbIy(ky D)olky D) — kyalo(kya)ly(kya) + kyealy (kg afo(k2 a)]

- IO(kZCb)[_k2cb11(k1 b)No(k2cb) - kl alo(kl a)Nl(kzca) + kzcall(kl a)No(kzca)]}

1

Fy= m {No(chb)[k1 bI,(kyb)o(k,.b) — ky al (kya)ly(ky.a) + kyoal ok, a)l(kz.a)]

— Io(ka.b) - [kybI (ki b)No(ks D) — kyal (kya)No(kyea) + kyealo(ky a)N(kyea)]}

Io(kys a)

F. _ Io(kosa)

" Zolkzea)  No(kzeb)o(kzet) — Io(kzeb)No(kzea)

The subscripts s and ¢ refer to the sample and cavity volume,
respectively. Z, and Z, denote combinations of Bessel
functions of the first kind (Io/,) and second kind
(No,N;—Neumann functions)

(A.9)

A4. Analytical Evaluation of the Geometric
Factor (5.3)

Combining (A.3) with (5.2), integrals are created similar
to (A.7) and (A.8). The analytical solution leads to these
expressions which are to be inserted into (5.4)
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